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Abstract

The minimum, sinusoidal drive for resonant rotation of a weakly damped pendulum and the contiguous
loci of stable states in a frequency-energy plane are determined by perturbing the solution for undamped,
unforced oscillations and invoking the method of harmonic balance. Instability occurs through turning-
point and period-doubling bifurcations, and the resonant states are stable only in rather small frequency
intervals between these bifurcations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Sinusoidly forced, periodic rotation of a pendulum of length l is governed by the nonlinear
differential equation

€yþ 2d_yþ sin y ¼ � sin ot; (1)

where y is the angular displacement from the downward vertical, _y � dy=dt is the angular
velocity, d (� 1=Q in Ref. [1]) is the damping ratio, � is the ratio of the maximum driving moment
to the maximum gravitational moment, o is the driving frequency, and the unit of time is ðl=gÞ1=2:
Numerical solutions of Eq. (1) for d ¼ 1

8
have been obtained through analog simulation by

D’Humieres et al. [1], and some of the present results have been reported in Ref. [2], but the
analytical solution does not appear to have been published. The present paper considers the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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analytical solution for 0od51 with � ¼ OðdÞ and shows that the minimum drive for stable
rotational oscillations is given by � ¼ 4:60d:
2. Free oscillations

The solution of Eq. (1) for free ðd ¼ � ¼ 0Þ rotational oscillations is given by

y ¼ 2amðt=kÞ ¼ o0t þ 2
X1
m¼1

m�1sech ðmpK 0=KÞ sin ðmo0tÞ; (2a)

o0 ¼ p=kK ; (2b)

where am is Jacobi’s amplitude of modulus k (to be determined), K ¼ KðkÞ is a complete elliptic
integral of the first kind, K 0 � Kðk0

Þ; and k0
� ð1� k2Þ1=2; all in the notation of Byrd and

Friedman [3].
3. Harmonic-balance approximation

The solution for free oscillations (Section 2) suggests the two-parameter perturbation

yðtÞ ¼ 2am t; t ¼
ot � f

ko0
ð0od; �51Þ; (3a,b)

in which the parameters k and f may be approximated by the method of harmonic balance.
Substituting Eqs. (3a,b) into Eq. (1) and invoking _y ¼ 2ðo=ko0Þdnt; €y ¼ �2ðo=o0Þ

2sn t cn t;
and sin y ¼ 2 sin ðam tÞ cos ðam tÞ ¼ 2 sn t cn t; where sn, cn and dn are Jacobi elliptic functions
[3], yields

1�
o2

o20

� �
sn t cn tþ 2dðo=ko0Þdn t ¼ 1

2
� sin ðko0tþ fÞ: (4)

The sin 2y — and dy=dt — weighted averages (indicated by hi) of Eq. (4) yield

1�
o2

o20

� �
hsn2tdn2ti ¼ 1

2
� cosfhsn t cn t sin ðpt=KÞi (5a)

and

2d
o

ko0

� �
hdn2ti ¼ 1

2
� sinfhdnt cos ðpt=KÞi (5b)

or, after evaluating the integrals [3],

�o0 cos f
o20 � o2

¼
2K

p2k
E2 � k02K2

EK 0 þ E0K � KK 0

 !
cosh2 ðpK 0=KÞ

sinh ðpK 0=KÞ
� Lðo0Þ (6a)
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and

�o0 sinf
2do

¼
4E

pk
cosh

pK 0

K

� �
� Rðo0Þ: (6b)

A preliminary exploration reveals that Eqs. (6a,b) yield real values of o for �51 only if
k02

� 1� k251; which permits the approximations

L � ð4=p2o0Þ cosh ð12po0Þ coth ð
1
2
po0Þ (7a)

and

R � ð4=pÞ cosh ð1
2
po0Þ: (7b)

The values of R given by Eq. (6b) and approximation (7b) are compared in Fig. 1. Substituting
Eq. (7) into Eq. (6) and eliminating f; yields

o2

o20
¼ 1� 2d2T2 �

�2

R2
� 4d2

� �
T2 þ 4ðdTÞ

4

� �1=2
; (8a)

where

T ¼ p tanh ð1
2
po0Þ: (8b)
Fig. 1. R(o0), as given by Eq. (6b) (——) and (7b) (- - -).
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The corresponding approximation to the Fourier expansion of Eq. (3a) is [cf. Eq. (2a)]

y ¼ ot � fþ 2
X1
m¼1

m�1sech ð1
2
mpo0Þ sin ½mðot � fÞ�: (9)

It follows from Eqs. (7b) and (8) that o2 is real, and hence that rotational oscillations are possible
(but not necessarily stable), if and only if

�4ð8d=pÞ½cosh2 ð1
2
po0Þ � p2d2sinh2 ð1

2
po0Þ�1=248d=p: (10)

The dimensionless mean energy implied by Eq. (3) is

hEi ¼ h1
2
_y
2
þ 1� cos yi ¼

2

k2
1þ

E

K

o2

o20
� 1

� �� �
(11a)

� 2 1þ 16 exp �
2p
o0

� �
þ
o0
p

o2

o20
� 1

� �� �
ðk " 1Þ: (11b)

The locus of 2K-periodic (in t) solutions in an o� hEi plane (see Fig. 2) is a loop (the resonance

curve) that lies above/below the locus of free oscillations, hE0i ¼ 2=k2; for f_1
2
p and intersects

hE0i at o ¼ 0 and at o ¼ o0 ¼ o�ðd; �Þ; where o� is determined by

Rðo�Þ ¼ ð�=2dÞ: (12)

It follows from the expansion about o ¼ o�; that the turning point, o ¼ o1ðd; �Þ; at which
dhEi=do ¼ 0; is given by

o1 ¼ o� þ d2T�ð1�
1
2
T�o�Þ

2
þ Oðd4Þ (13)
Fig. 2. The perturbation energy, as calculated from Eqs. (8a) and (11b), for d ¼ 1
8
and � ¼ 0:5; 0.6 and 0.7. The solid/

dashed segments comprise stable/unstable states. The dots and crosses mark the turning-point ðo ¼ o1Þ and period-
doubling ðo ¼ o2Þ bifurcation determined by Eqs. (13) and (17), respectively.
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and lies on the upper branch (upper sign in Eq. (8)) of the resonance curve. The 2K-periodic
solution approximated by Eq. (3) loses stability to a 2K-periodic perturbation at the turning
point, and the remaining states on the upper branch of the resonance curve (above and to the left
of the turning point) are unstable.
4. Period doubling

The 2K-periodic solution approximated by Eq. (3) also loses stability to a 4K-periodic solution
through a period-doubling bifurcation at o ¼ o2ðd; �Þ: The solution of Eq. (1) near this period-
doubling bifurcation may be approximated by

yðtÞ ¼ 2 am tþ AðtÞPðtÞ; jAj51; (14a,b)

_AðtÞ ¼ Oð�AÞ; Pðtþ 4KÞ ¼ PðtÞ; (14c,d)

where A is (by hypothesis) a small, slowly varying amplitude, and P is 4K-periodic. Substituting
Eq. (14a) into Eq. (1), linearizing in A; taking the moment of the result with respect to P;
integrating PPtt by parts, and invoking Eq. (14d) yields

hP2ið €A þ 2d _AÞ þ hð1� 2sn2 tÞP2 � ðo=ko0Þ
2P2tiA ¼ 0: (15)

It follows from Eq. (15) that a necessary condition for stability with respect to the period-doubling
perturbation is

hð1� 2sn2 tÞP2 � ðo=ko0Þ
2P2ti � lðPÞ40: (16)

The expansion of the solution of Eq. (1) in powers of � leads to a sequence of Lamé equations of
degree 1, which suggests that P be expanded in the 4K-periodic Lamé functions Ec2mþ1

1 ðtÞ and
Es2mþ1

1 ðtÞ: The dominant member of this set is Ec11 ¼ cnt [4], which, together with the fact that the
functional lðPÞ is stationary, within 1þ Oðd2Þ; with respect to variations of P about its true value
(this follows from a Lagrangian formulation), suggests the trial function P ¼ cn t: The resulting
approximation to o22 is

o2
o0

� �
¼ 1�

3k02
ðE � k02KÞ

ð1� 2k02
ÞE þ k02K

� 1� 48 exp �
2p
o0

� �
: (17)

Expanding about o ¼ o�; yields

o2 ¼ o� þ 48T�1
� ð1� 1

2
T�o�Þ expð�2p=o�Þ: (18)

If T�o�42 the period-doubling bifurcation lies below the turning point, and that segment of the
resonance curve between these two bifurcations comprises stable states; their vertical order is
reversed, and there are no stable states, if T�o�o2: It follows that �44:60d is necessary for
stability; cf. Eq. (10), which implies �42:55d for the existence of rotational oscillations.
D’Humieres et al. [1, Figs. 1 and 3] report only a very narrow o–� band of rotational

oscillations for d ¼ 1
8
and �o1; with a minimum � of roughly 0:7 ð�=d45:6Þ: A repetition of their

numerical integration (but on a digital, rather than an analog, computer) confirmed their
determination of a rotational state for d ¼ 1

8
; � ¼ 0:7 and o ¼ 0:55 and yielded hEi ¼ 1:88; which
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compares well with hEi ¼ 1:79 from Eqs. (8b) and (10). A series of runs for d ¼ 1
8
; � ¼ 5

8
and

o ¼ 0:1ð0:05Þ 0:85; with initial conditions to match Eq. (3), produced (for otb1) only swinging
oscillations.
5. Subharmonic resonance

Solution (3) describes subharmonic resonance between the input and the mth harmonic in
Eq. (2a) if o0 is replaced by o ¼ mo0 (so that h_yi ¼ o=m) in Eq. (3b). The input-dissipation
balance then yields mpK 0=K in place of pK 0=K in Eqs. (6a,b) and o in place of o0 in Eqs. (7a,b).
Odd subharmonics do not appear in the numerical experiments of D’Humieres et al. [1], at least
for �o1 (D’Humieres et al. do report oscillations for which h_yi ¼ mo and mo=n; m4n; but only
for �41).
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